Military-grade high power amplifiers

Amplifiers play a vital role in satellite communications systems around the world, and have undergone major technology developments in recent decades, resulting in faster, more efficient products. As requirements from military and commercial entities alike have expanded, and demand for enhanced SWaP (size, weight and power) properties has grown, the leading amplifier manufacturers around the world have forged ahead with new product offerings. Douglas Slaton, Marketing Communications Manager of CPI Satcom Products, provides an overview of the development of amplifiers over the years, and outlines the latest products available on the market today.

The US military’s use of terminals for satellite communications is more widespread than ever before. Whether the need is to control unmanned aerial vehicles (UAVs), to strategically coordinate a vast array of assets or personnel during a mission, or simply to make it easier for service members to call home or improve their off-duty entertainment experience, the requirements for bandwidth are steadily increasing and show little sign of leveling off. In addition, militaries around the world have been working hard to improve the flexibility of their operations, particularly with regard to available uplink frequencies. No fighting force wants to face a situation where sophisticated battlefield software is unusable simply because satellite bandwidth cannot be found. The capability to uplink in multiple bands and, more importantly, the development of millimeter wave architecture, have provided a vital solution to the US military’s bandwidth needs.

The changing requirements for amplifiers

Over the years, amplifier development has typically been able to keep up with the requirements the military has imposed, in terms of output power, frequency and power efficiency. The traveling wave tube (TWT) was conceived more than 25 years before Sputnik was launched in October 1957, as the control and manipulation of radio frequency (RF) waves had been a topic of interest for radar research since the 1920s. Andrei Haeff, a native Muscovite who emigrated to the United States in 1928 to study electrical and mechanical engineering at the California Institute of Technology, first began designing a prototype TWT in 1931, and was awarded a patent for it five years later. In 1943, Austrian Rudolph Kompfner utilized some aspects of Haeff’s work at the University of Birmingham to create a TWT that works much more like those used today. Kompfner is often credited with the invention of the modern TWT.

After the launch of Sputnik, the American military’s effort to develop satellites understandably became a top priority, and by 1968 they had begun operating the first communications constellation, the Defense Satellite Communications System (DSCS). For its larger, heavier terminals, DSCS II/III called for 700W X-band TWTAs, then 900W X-band TWTAs, and finally 2.5kW TWTAs. These requirements were reasonably straightforward for TWT companies, as well as for HPA manufacturers, since X-band products are not technologically much more difficult for manufacturers to develop than the C-band products that were already widely used in the commercial industry.

By the 1980s, the US military determined that a new satellite system would have to be developed to handle increasing bandwidth demands. The Wideband Global Satcom (WGS) constellation of satellites was therefore planned, utilizing both X and Ka-band frequencies. At the same time, the military contracted with various system integrators for multi-band terminals, including multi-band HPAs, which could operate in either C-band or X-band, and often in Ku-band as well. This ‘quick fix’ enabled the military to contract for and use commercial capacity well beyond the capabilities of DSCS while the WGS system was being developed. These multiband amplifiers were typically developed under pre-COTS (Commercial off the Shelf) military procurement programs, which effectively required manufacturers to set up development and manufacturing programs that were parallel to the commercial ones they already had. Nevertheless, since government contracts often required very large quantities of amplifiers, these costly efforts were
REAL-LIFE REQUIRES REAL-TIME

Maritime authorities around the globe face critical operational decisions every day for protecting their waters, their borders, and their people. Considering the magnitude of these decisions, authorities rely on the precision of their data and the speed it is received.

Real-time up-to-date vessel position reports allow the fastest response times to incidents, while providing detailed information for proactive analysis of emerging situations to provide early-warnings and mitigation of potential maritime disasters and incidents.

No second guessing or corroboration of sources required. exactView RT powered by Harris has it covered.

Learn more at www.exactearth.com
typically beneficial to the manufacturer in the long run.

In the 1990s, the government began to switch to COTS procurement, and by the time serious requirements were identified in Ka-band, much of the TWTA research and development (R&D) had already been done in commercial markets. Only in the solid state field has product development potentially lagged behind military demand, but that is now progressing at a rather quick pace.

Another challenge for manufacturers has been answering the need for mobile, tactical terminals and even miniature terminals that individual soldiers can carry. For these systems, the military has demanded more power, with less weight, better power efficiency, and smaller size. They even have an acronym for it: SWaP, for size, weight and power. While accommodating these often contradictory requirements can be a difficult assignment, industry manufacturers have answered the challenge with many product offerings, including the increased use of the latest solid state technology.

Traveling Wave Tube Amplifiers

For medium and high power requirements, TWTAAs are still the industry standard with regard to power efficiency and practical size. This is particularly true for the most common bands utilized by the military: X, Ku and Ka. In addition, the US Air Force has requirements for airborne TWTAAs with liquid cooling, and manufacturers like CPI have made these products available. At least two of the leading TWTA manufacturers, including CPI, offer most of these products and have considerable experience dealing with military prime contractors.

SuperLinear® and Peak Power TWTAAs

SuperLinear TWTAAs and Peak Power TWTAAs are typically used in applications where a certain linear power is specified. SuperLinear TWTAAs, which are exclusive to CPI, are highly power efficient and optimized for operation at linear output power. Peak power TWTAAs are equally linear, but are not optimized for operating at lower power levels, and thus not as SWaP efficient.

GaN-based solid state BUCs

CPI also manufactures GaN-based BUCs, which represent the latest solid state technology, and utilize Gallium Nitride FETs instead of the traditional Gallium Arsenide FETs. Historically, the frequency and bandwidth of SSPAs were dictated by the manufacturers of FETs, but in recent times, SSPA manufacturers have found manufacturers capable of producing FETs in just about all of the frequencies which interest the military. GaN BUCs are more efficient than GaAs BUCs, allowing for smaller footprints, lighter weight and higher practical power levels than the older technology.
GaN-based transceivers
The advent of GaN has resulted in some interesting lightweight products for individual use. Pictured below is a CPI 16 W X-band transceiver weighing only 4.1kg.

Tri-Band TWTAs
A number of manufacturers, including CPI, carry tri-band TWTAs in their catalogs. These amplifiers are typically able to produce signals in C-band, X-band and Ku-band.

MIL Standards explained
Compliance standards for the military have been established by the US Department of Defense's Defense Information Services Agency (DISA) for all satellite infrastructure, including high power amplifiers (HPAs). These standards were first established in the early 1970s and have been updated over time. The standards cover many aspects of each product, including signal linearity and noise performance; mechanical and environmental requirements such as shock, vibration, and resistance to salt air; and guidelines for qualification testing. The current version of DISA standards are called MIL-STD-188/164B.

New terminals that are intended for use with WGS satellites must also undergo a procedure commonly known as ARSTRAT testing. Individual components of terminals, such as HPAs and antennas, are not individually certified - only the entire terminals are. Thus, an HPA can be said to be approved for use in a particular ARSTRAT certified terminal, but it cannot be said to be ARSTRAT certified.

Production begins on US Army’s newest thermal weapon sights
The US Army has awarded BAE Systems a $13.5 million order to begin producing the new Family of Weapon Sights-Individual (FWS-I) thermal weapon sight for soldiers. Under the low rate initial production award, the company will deliver more than 100 weapon sight systems as part of a previously announced five-year contract for the Army’s Enhanced Night Vision Goggle III and Family of Weapon Sight-Individual (ENVG III/FWS-I) program.

“These advanced weapon sights will allow soldiers to conduct surveillance and acquire targets in any light or weather conditions, increasing mission safety and effectiveness,” said Marc Casseres, Director of Imaging and Aiming Solutions at BAE Systems. “This production order means that soldiers are one step closer to receiving this mission-critical technology for use in-theater.”

The BAE Systems-developed FWS-I solution integrates the company’s first-to-market 12-micron technology, which helps make its offering smaller and lighter while providing superior image quality. The uncooled infrared thermal weapon sight allows soldiers to clearly view targets at more than 1,000 meters away. The clip-on sight can be mounted on an M4 carbine, M16A4 rifle, M249 Squad Automatic Weapon, M136 AT4 rifle, or M141 Bunker Defeat. It can also seamlessly connect with the ENVG III for increased survivability and lethality.

When combined with the ENVG III system, BAE Systems’ FWS-I and Rapid Target Acquisition (RTA) Module solution can greatly reduce target engagement time. The innovative RTA solution uses a wireless connection to integrate the weapon sight view directly into the soldier’s goggle so targets can be quickly located and engaged from any carry position, without needing to raise the weapon to the eye. This allows soldiers to accurately engage targets while still maintaining full cover.

The new production order comes on the heels of the Army’s declaration that the system is ready for Low Rate Initial Production (LRIP). The decision, known as “Milestone C,” was approved following the successful conclusion of a series of rigorous contractor- and government-led field testing events.